Control of Nonlinear Spacecraft Attitude Motion
half-circle
vector

Control of Nonlinear Spacecraft Attitude Motion

Highlights

This course trains you in the skills needed to program specific orientation and achieve precise aiming goals for spacecraft moving through three dimensional space. First, we cover stability definitions of nonlinear dynamical systems, covering the difference between local and global stability. We then analyze and apply Lyapunov's Direct Method to prove these stability properties, and develop a nonlinear 3-axis attitude pointing control law using Lyapunov theory. Finally, we look at alternate feedback control laws and closed loop dynamics. After this course, you will be able to... * Differentiate between a range of nonlinear stability concepts * Apply Lyapunov's direct method to argue stability and convergence on a range of dynamical systems * Develop rate and attitude error measures for a 3-axis attitude control using Lyapunov theory * Analyze rigid body control convergence with unmodeled torque

About the Course Provider

Coursera provides access to more than 3000+ courses across a wide variety of subjects in parntership with different universities and organizations.

Course by

  • self
    Self paced
  • dueration
    Duration 31 hours
  • domain
    Domain Personal Development
  • subs
    Monthly Subscription
    Course is included in
    1. Starter @ AED 99 + VAT
    2. Professional @ AED 149 + VAT
  • fee
    Buy Now AED 344.99 + VAT
  • language
    Language English