Electrodynamics: In-depth Solutions for Maxwell’s Equations
half-circle
vector

Electrodynamics: In-depth Solutions for Maxwell’s Equations

Highlights

This course is the fourth course in the Electrodynamics series, and is directly proceeded by Electrodynamics: Electric and Magnetic Fields. Previously, we have learned about visualization of fields and solutions which were not time dependent. Here, we will return to Maxwell's Equations and use them to produce wave equations which can be used to analyze complex systems, such as oscillating dipoles. We will also introduce AC circuits, and how they can be simplified, solved, and applied. Learners will: • Have a complete understanding of Maxwell's Equations and how they relate to the magnetic and electric potentials. • Be able to solve problems related to moving charges, and add relativistic corrections to the equations • Understand the different components in AC circuits, and how their presence can change the function of the circuit. The approach taken in this course complements traditional approaches, covering a fairly complete treatment of the physics of electricity and magnetism, and adds Feynman’s unique and vital approach to grasping a picture of the physical universe. Furthermore, this course uniquely provides the link between the knowledge of electrodynamics and its practical applications to research in materials science, information technology, electrical engineering, chemistry, chemical engineering, energy storage, energy harvesting, and other materials related fields.

About the Course Provider

Coursera provides access to more than 3000+ courses across a wide variety of subjects in parntership with different universities and organizations.

Course by

  • self
    Self paced
  • domain
    Domain Science & Engineering
  • subs
    Monthly Subscription
    Course is included in
    1. Starter @ AED 99 + VAT
    2. Professional @ AED 149 + VAT
  • fee
    Buy Now Option not available
  • language
    Language English