Image Classification with CNNs using Keras
half-circle
vector

Image Classification with CNNs using Keras

أبرز محتويات الدورة

In this 1-hour long project-based course, you will learn how to create a Convolutional Neural Network (CNN) in Keras with a TensorFlow backend, and you will learn to train CNNs to solve Image Classification problems. In this project, we will create and train a CNN model on a subset of the popular CIFAR-10 dataset. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed. Prerequisites: In order to be successful in this project, you should be familiar with python and convolutional neural networks. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

حول مقدم الدورة

Coursera provides access to more than 3000+ courses across a wide variety of subjects in parntership with different universities and organizations.

الطبع بواسطة

  • self
    التعلم الذاتي
  • dueration
    المدة 3 ساعات
  • domain
    الاختصاص علم البيانات والذكاء الاصطناعي
  • subs
    Monthly Subscription Option not available
  • fee
    Buy Now مجاني
  • language
    اللغة الإنكليزية